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a b s t r a c t

Let S ⊆ V (G) and κG(S) denote the maximum number k of edge-disjoint trees T1, T2, · · · ,
Tk in G such that V (Ti)

⋂
V (Tj) = S for any i, j ∈ {1, 2, · · · , k} and i ̸= j. For an

integer r with 2 ≤ r ≤ n, the generalized r-connectivity of a graph G is defined
as κr (G) = min{κG(S)|S ⊆ V (G) and |S|= r}. In fact, κ2(G) is exactly the traditional
connectivity of G. In this paper, we focus on κ4(HCNn) of the hierarchical cubic network
HCNn and obtain that κ4(HCNn) = n for n ≥ 3. As a corollary, we obtain that κ3(HCNn) =

n for n ≥ 3.
© 2020 Elsevier B.V. All rights reserved.

1. Introduction

An interconnection network is usually modeled by a connected graph G = (V , E), where nodes represent processors and
dges represent communication links between processors. The connectivity is one of the important parameters to evaluate
he reliability and fault tolerance of a network. The connectivity κ(G) of a graph G is defined as the minimum number of
ertices whose deletion results in a disconnected graph. Whitney [20] provides another definition of connectivity. For any
ubset S = {u, v} ⊆ V (G), let κG(S) denote the maximum number of internally disjoint paths between u and v in G. Then
(G) = min{κG(S)|S ⊆ V (G) and |S| = 2}. As a generalization of the traditional connectivity, the generalized r-connectivity
as introduced by Hager et al. [8] in 1985.
Let S ⊆ V (G) and κG(S) denote the maximum number k of edge-disjoint trees T1, T2, . . . , Tk in G such that

V (Ti)
⋂

V (Tj) = S for any i, j ∈ {1, 2, . . . , k} and i ̸= j. For an integer r with 2 ≤ r ≤ n, the generalized r-connectivity
of a graph G is defined as κr (G) = min{κG(S)|S ⊆ V (G) and |S| = r}. This is a parameter that can measure the reliability
f a network G to connect any r vertices in G. The generalized 2-connectivity is exactly the traditional connectivity. Li
t al. [10] derived that it is NP-complete for a general graph G to decide whether there are k internally disjoint trees
onnecting S, where k is a fixed integer, and S ⊆ V (G). There are some known results [12,14,18] regarding the bounds
f generalized connectivity and the relationship between connectivity and generalized connectivity. In addition, there
re some known results about generalized r-connectivity for some special classes of graphs. For example, Chartrand
t al. [2] studied the generalized connectivity of complete graphs; Li et al. [13] first studied the generalized 3-connectivity
f Cartesian product graphs, then Li et al. [15] also studied the generalized 3-connectivity of graph products; Li et al. [11]
tudied the generalized connectivity of the complete bipartite graphs, Lin et al. [19] studied the generalized 4-connectivity
f hypercubes and Zhao et al. studied the generalized 4-connectivity of exchanged hypercubes [25]. Zhao et al. had
otten the generalized 3-connectivity of the regular networks with the property that each vertex has exactly two outside
eighbors [26], the (n, k)-bubble-sort graphs [27], the (n, k)-star graphs and alternating group graphs [23] and the Caylay
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raph generated by complete graph and wheel graph [24]. As the Cayley graph has some attractive properties to design
nterconnection networks, Li et al. [17] studied the generalized 3-connectivity of star graphs and bubble-sort graphs and
i et al. [16] studied the generalized 3-connectivity of the Cayley graph generated by trees and cycles. For more results
bout the recursive graph and Cayley graph, one can refer to [3] and [9], respectively. So far, there are few results about
r (G) for r = 4 and almost all known results are about r = 3. In this paper, we obtain that κ4(HCNn) = n for n ≥ 3. As a

corollary, we obtain that κ3(HCNn) = n for n ≥ 3.
The paper is organized as follows. In Section 2, some terminologies and notations are introduced. In Section 3, the

generalized 4-connectivity of the hierarchical cubic network is determined. As a corollary, the generalized 3-connectivity
of the hierarchical cubic network can be obtained directly. In Section 4, the paper is concluded.

2. Preliminary

2.1. Terminologies and notations

Let G = (V , E) be a simple and undirected graph. Let |V (G)| denote the order of the graph G. Let V ′
⊆ V (G), then G[V ′

]

is the subgraph of G whose vertex set is V ′ and whose edge set consists of all edges of G which have both ends in V ′. For
a vertex v ∈ V (G), the set of neighbors of v in a graph G is denoted by NG(v) and NG[v] = NG(v) ∪ {v}. Let dG(v) denote
the number of edges incident with v and δ(G) denote the minimum degree of the graph G. A graph is said to be k-regular
if for any vertex v of G, dG(v) = k. Two xy- paths P and Q in G are internally disjoint if they have no common internal
vertices, that is, V (P)

⋂
V (Q ) = {x, y}. Let Y ⊆ V (G) and X ⊂ V (G) \ Y , the (X, Y )-paths is a family of internally disjoint

paths starting at a vertex x ∈ X , ending at a vertex y ∈ Y and whose internal vertices belong neither to X nor to Y . If
X = {x}, then the (X, Y )-paths is a family of internal disjoint paths whose starting vertex is x and the terminal vertices
are distinct in Y , which is referred to as a k-fan from x to Y . For terminologies and notations not defined here, refer to [1].

Let [n] = {1, 2, . . . , n}. Let Vn be the set of binary sequence of length n, i.e., Vn = {x1x2 · · · xn|xi ∈ {0, 1} and 1 ≤ i ≤ n}.
For x = x1x2 · · · xn ∈ Vn, let xl = x1 · · · xl−1xlxl+1 · · · xn and x = x1x2 · · · xn ∈ Vn, which is called the complement of x,
here xi ∈ {0, 1}\{xi} for each i ∈ [n].
The hypercube is one of the most fundamental interconnection networks. An n-dimensional hypercube Qn = (V , E) is

an undirected graph with |V | = 2n and |E| = n2n−1. Each vertex can be represented by an n-bit binary string. There is
n edge between two vertices whenever their binary string representation differs in only one bit position. The Hamming
istance, denoted by dH (u, v), between any two vertices u and v of Qn is the number of different positions between
he binary strings of u and v. It is easy to see that two vertices u and v of the hypercube Qn are adjacent if and only if
H (u, v) = 1. The hierarchical cubic network was introduced by Ghose and Desai in [7], which can feasibly be implemented
ith thousands or more processors, while retaining some good properties of the hypercubes, such as regularity, symmetry
nd logarithmic diameter. Next, we will introduce the definition of the hierarchical cubic network.

.2. The n-dimensional hierarchical cubic network HCNn

The n-dimensional hierarchical cubic network HCNn can be decomposed into 2n clusters, say C1, C2, . . . , C2n , and each
luster is isomorphic to an n-dimensional hypercube Qn. Any node u ∈ V (HCNn) is identified by a unique 2n-bit binary
tring, denoted by u = (c(u), p(u)), as an id. Each id contains two parts: n-bit cluster-id c(u) and n-bit node-id p(u). An
dge in a cluster is called a cube edge, say Ecu(HCNn), and an edge connecting two nodes in two distinct clusters is called
cross edge, denoted by Ecr (HCNn). The set of edges that connects two distinct clusters Ci and Cj is denoted by Ecr (Ci, Cj),
here i, j ∈ [2n

]. For u, v ∈ V (HCNn), let u = (c(u), p(u)) and v = (c(v), p(v)). There exists an edge uv ∈ E(HCNn) if and
nly if uv belongs to one of the following conditions:
(1) Ecu(HCNn) = {uv|c(u) = c(v) and dH (p(u), p(v)) = 1},
(2) Ecr (HCNn) = {uv| if c(u) = p(u), then c(v) = p(v) = c(u), otherwise, c(u) = p(v) and p(u) = c(v)}.
By the definition of hierarchical cubic network, HCNn is an (n + 1)-regular network. For any vertex v of HCNn, it has

xactly one neighbor outside the cluster which v belongs to, which is called the outside neighbor of v and denoted by v′.
n 2-dimensional hierarchical cubic network HCN2 is shown as Fig. 1, where the red edges represent the cross edges of
CN2.
There are some known results about HCNn, for which one can refer to [4–7,21,22,28] etc. for the detail. By the definition

f the hierarchical cubic network HCNn, the following result can be obtained.

emma 1. Let C1, C2, . . . , C2n be the 2n clusters of HCNn for n ≥ 3, then the following results hold.

(1) For i ∈ [2n
], let v ∈ V (Ci) with c(v) = p(v). The outside neighbors of distinct vertices in V (Ci) \ {v} belong to different

clusters of HCNn. In addition, if u ∈ V (Ci) \ {v} with p(u) = p(v), the outside neighbor of u belongs to the same cluster
as that of v.

(2) For u ∈ V (Ci) and v ∈ V (Cj), there are two cross edges between Ci and Cj for i ̸= j and i, j ∈ [2n
] if and only if

c(u) = c(v); otherwise there is only one cross edge.
(3) No two vertices in the same cluster of HCNn have a common outside neighbor.
195
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Fig. 1. The 2-dimensional hierarchical cubic network HCN2 .

roof. (1) Let v1, v2 ∈ V (Ci) \ {v} and v1 ̸= v2. By the definition of HCNn, c(v1) ̸= p(v1), c(v2) ̸= p(v2) and p(v1) ̸= p(v2).
hus, the outside neighbors of v1 and v2 are (p(v1), c(v1)) and (p(v2), c(v2)), respectively. Since p(v1) ̸= p(v2), the outside
eighbors of v1 and v2 belong to different clusters of HCNn. Since v ∈ V (Ci) and c(v) = p(v), the outside neighbor of v

s (c(v), p(v)). Let u ∈ V (Ci) \ {v}, then c(u) ̸= p(u) and the outside neighbor of u is (p(u), c(u)). When p(u) = p(v), the
utside neighbors of u and v belong to the same cluster of HCNn.
(2) By (1), the result can be obtained directly.
(3) Let u, v ∈ V (Ci) for i ∈ [2n

] and assume that they have a common outside neighbor, say w, then u and v are the
wo outside neighbors of w, which is a contradiction. □

emma 2. Let C1, C2, . . . , C2n be the 2n clusters of HCNn for n ≥ 3, then for any vertex v ∈ V (Ci) and i ∈ [2n
], |NCi [v]| = n+1

nd the outside neighbors of vertices in NCi [v] belong to different clusters of HCNn.

roof. Without loss of generality, let v ∈ V (C1). C1 is isomorphic to the n-dimensional hypercube Qn, which is n-regular,
hus |NC1 [v]| = n+1. As n ≥ 3, for any v1, v2 ∈ NC1 [v], p(v1) ̸= p(v2). By (1) of Lemma 1, the outside neighbors of vertices
in NC1 [v] belong to different clusters of HCNn. □

Lemma 3. Let C1, C2, . . . , C2n be the 2n clusters of HCNn and H = HCNn[
⋃k

j=1 V (Cij )] for ij ∈ [2n
], k ≥ 1 and n ≥ 3, then H

is connected.

Proof. Without loss of generality, let H = HCNn[
⋃k

j=1 V (Cj)]. By (2) of Lemma 1, there is at least one cross edge between
any two distinct clusters of HCNn. Thus, H is connected. □

3. The generalized 4-connectivity of the hierarchical cubic network HCNn

In this section, we will study the generalized 4-connectivity of hierarchical cubic networks. To prove the main result,
the following results are useful.

Lemma 4 ([1]). Let G be a k-connected graph, and let x and y be a pair of distinct vertices in G. Then there exist k internally
disjoint paths P1, P2, . . . , Pk in G connecting x and y.

Lemma 5 ([1]). Let G = (V , E) be a k-connected graph, and let X and Y be subsets of V (G) of cardinality at least k. Then there
exists a family of k pairwise disjoint (X, Y )-paths in G.

Lemma 6 ([1]). Let G = (V , E) be a k-connected graph, let x be a vertex of G, and let Y ⊆ V (G) \ {x} be a set of at least k
vertices of G. Then there exists a k-fan in G from x to Y . That is, there exists a family of k internally disjoint (x, Y )-paths whose
terminal vertices are distinct in Y .

The following result is about the connectivity of the hypercube Qn.

Lemma 7 ([1]). κ(Qn) = n for n ≥ 2.

The following result is about the generalized 4-connectivity of the hypercube Qn.

Theorem 1 ([19]). κ4(Qn) = n − 1 for n ≥ 2.

The following result is about the upper bound of κk(G) for a connected graph G.
196
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emma 8 ([19]). Let G be a connected graph of order n with minimum degree δ. Then κk(G) ≤ δ for 2 ≤ k ≤ n. In particular,
if there are two adjacent vertices of degree δ, then κk(G) ≤ δ − 1 for 3 ≤ k ≤ n. Moreover, the upper bounds are sharp in both
cases.

The following result is about the relationship between κk(G) and κk−1(G) of a regular graph G.

Lemma 9 ([19]). Let G be an r-regular graph. If κk(G) = r − 1, then κk−1(G) = r − 1, where k ≥ 4.

To prove the generalized 4-connectivity of the n-dimensional hierarchical cubic network HCNn for n ≥ 3, the following
lemmas are useful.

Lemma 10. Let C1, C2, . . . , C2n be the 2n clusters of HCNn for n ≥ 3. Let S = {x, y, z, w} ⊆ V (HCNn) such that |S
⋂

V (Ci)| = 3
and |S

⋂
V (Cj)| = 1 for distinct i, j ∈ [2n

], then there are n internally disjoint trees connecting S in HCNn.

Proof. Without loss of generality, let |S
⋂

V (C1)| = 3 and |S
⋂

V (C2)| = 1. Let {x, y, z} ⊆ V (C1) and w ∈ V (C2). See Fig. 2.
Recall that v = (c(v), p(v)) for each v ∈ V (HCNn). As x ̸= z, assume that pn(x) ̸= pn(z) and let p(x) = a1a2 · · · an−10 and
p(z) = b1b2 · · · bn−11. As Ci is a copy of Qn for each i ∈ [2n

], we assume that the nth digit of p(y) is 0. Divide C1 along
the nth digit of the node-id into two copies of Qn−1, denoted by Q 0

n−1 and Q 1
n−1, respectively. Thus, x, y ∈ V (Q 0

n−1) and
z ∈ V (Q 1

n−1). By Lemma 7, κ(Q 0
n−1) = n − 1, then there are n − 1 internally disjoint paths P1, P2, . . . , Pn−1 between x and

y in Q 0
n−1. Let xi ∈ V (Pi) such that yi ∈ V (Q 1

n−1) \ {z}, where yi is the neighbor of xi in Q 1
n−1 and 1 ≤ i ≤ n − 1. This

can be done as Pis are internally disjoint for 1 ≤ i ≤ n − 1. Let X = {x1, x2, . . . , xn−1} and Y = {y1, y2, . . . , yn−1}. By
Lemma 7, κ(Q 1

n−1) = n− 1. By Lemma 6, there are n− 1 internally disjoint paths P ′

1, P
′

2, . . . , P
′

n−1 from z to Y in Q 1
n−1. Let

Ti = Pi
⋃

xiyi
⋃

P ′

i for each i ∈ [n − 1], then n − 1 internally disjoint trees T̂is that connecting x, y and z are obtained in
C1.

Note that X = {x1, x2, . . . , xn−1}, it is possible that x ∈ X or y ∈ X . To avoid duplication, we just consider the case that
x /∈ X and y /∈ X . Let X ′

= X ∪{x, y}. By (1) of Lemma 1, the outside neighbors of vertices in X ′ belong to different clusters
of HCNn. Thus, there is at most one vertex of X ′ with the outside neighbor belonging to C2. To obtain the main result, the
following two cases are considered.

Case 1. There is one vertex in X ′ with the outside neighbor belonging to C2.
Without loss of generality, let x′

1 ∈ V (C2), x′

i ∈ V (Ci+1) for 2 ≤ i ≤ n − 1, x′
∈ V (Cn+1) and y′

∈ V (Cn+2). By (2)
of Lemma 1, there is an edge wiw

′

i ∈ Ecr (Ci+1, C2) such that wi ∈ V (Ci+1) and w′

i ∈ V (C2) for 2 ≤ i ≤ n − 1. Let
W ′

= {x′

1, w
′

2, . . . , w
′

n−1}, then the following subcases are considered depending on the outside neighbor z ′ of z.
Subcase 1.1. z ′

∈ V (C2).
As any vertex of HCNn has exactly one outside neighbor, z ′ /∈ W ′. Let W = W ′

∪ {z ′
} = {x′

1, w
′

2, . . . , w
′

n−1, z
′
}, thus

|W | = n.
If w /∈ W , by (2) of Lemma 1, w′ /∈ ∪

n
i=1V (Ci). Without loss of generality, let w′

∈ V (Cn+3). See Fig. 2. By Lemma 7,
κ(C2) = n. By Lemma 4, there are n internally disjoint paths W1,W2, . . . ,Wn from w to W such that x′

1 ∈ W1, w′

i ∈ Wi
for 2 ≤ i ≤ n − 1 and z ′

∈ Wn. As Ci+1 is connected, there is a path P̂i between x′

i and wi in Ci+1 for 2 ≤ i ≤ n − 1. By
Lemma 3, HCNn[∪

n+3
i=n+1V (Ci)] is connected, so it contains a tree T that connects x′, y′ and w′. Let T1 = T̂1 ∪ W1 ∪ x1x′

1,
Ti = T̂i ∪ P̂i ∪ Wi ∪ xix′

i ∪ wiw
′

i for 2 ≤ i ≤ n − 1 and Tn = Wn ∪ T ∪ xx′
∪ yy′

∪ zz ′
∪ ww′, then n internally disjoint S-trees

Tis for 1 ≤ i ≤ n are obtained in HCNn.
If w ∈ W , let Ŵ = (W \ {w}) ∪ {v} for v ∈ V (C2) and v′

∈ V (Cn+3). By (2) of Lemma 1, this can be done. Similar as
w /∈ W , n internally disjoint S-trees Tis for 1 ≤ i ≤ n can be obtained in HCNn.

Subcase 1.2. z ′
∈ V (Ci+1) for some i ∈ [n − 1] \ [1].

Without loss of generality, let z ′
∈ V (C3). See Fig. 3. Since z ′, x′

2 ∈ V (C3), by (2) of Lemma 1, y′

2 /∈ ∪
n+2
i=1 V (Ci). Without

loss of generality, let y′

2 ∈ V (Cn+3). By (2) of Lemma 1, there are edges aa′
∈ Ecr (Cn+3, C2) and bb′

∈ Ecr (Cn+2, C2) such
that a ∈ V (Cn+3), b ∈ V (Cn+2), and a′, b′

∈ V (C2). Recall that there is an edge wiw
′

i ∈ Ecr (Ci+1, C2) such that wi ∈ V (Ci+1)
and w′

i ∈ V (C2) for 3 ≤ i ≤ n − 1. Let W = {x′

1, a
′, w′

3, . . . , w
′

n−1, b
′
}. By Lemma 7, κ(C2) = n. By Lemma 4, there are

internally disjoint paths W1,W2, . . . ,Wn from w to W such that x′

1 ∈ W1, a′
∈ W2, w

′

i ∈ Wi for 3 ≤ i ≤ n − 1 and
′
∈ Wn. As Ci+1 is connected, there is a path P̂i between x′

i and wi in Ci+1 for 3 ≤ i ≤ n− 1 and there is a path P between
′

2 and a in Cn+3. By Lemma 3, HCNn[V (C3 ∪ Cn+1 ∪ Cn+2)] is connected, thus it contains a tree T that connects x′, y′, z ′

nd b. Let T1 = T̂1 ∪ W1 ∪ x1x′

1, T2 = T̂2 ∪ W2 ∪ P ∪ ∪y2y′

2 ∪ aa′, Ti = T̂i ∪ P̂i ∪ Wi ∪ xix′

i ∪ wiw
′

i for 3 ≤ i ≤ n − 1 and
n = Wn ∪ T ∪ bb′

∪ xx′
∪ yy′

∪ zz ′, then n internally disjoint S-trees are obtained in HCNn.
Subcase 1.3. z ′

∈ V (HCNn) \ ∪
n
i=1V (Ci).

Without loss of generality, let z ′
∈ V (Cn+1). By (2) of Lemma 1, there is an edge aa′

∈ Ecr (Cn+2, C2) such that a ∈ V (Cn+2)
nd a′

∈ V (C2). See Fig. 4. Recall that there is an edge wiw
′

i ∈ Ecr (Ci+1, C2) such that wi ∈ V (Ci+1) and w′

i ∈ V (C2) for
≤ i ≤ n − 1. Let W = {x′

1, w
′

2, w
′

3, . . . , w
′

n−1, a
′
}. By Lemma 7, κ(C2) = n. By Lemma 4, there are n internally disjoint

aths W1,W2, . . . ,Wn from w to W such that x′

1 ∈ W1, w′

i ∈ Wi for 2 ≤ i ≤ n − 1 and a′
∈ Wn. As Ci+1 is connected,

here is a path P̂i between x′

i and wi for 2 ≤ i ≤ n − 1 in Ci+1. By Lemma 3, HCNn[V (Cn+1 ∪ Cn+2)] is connected, thus it
ontains a tree T connecting x′, y′, z ′ and a. Let T1 = T̂1 ∪ W1 ∪ x1x′

1, Ti = T̂i ∪ P̂i ∪ Wi ∪ xix′

i ∪ wiw
′

i for 2 ≤ i ≤ n − 1 and
= W ∪ T ∪ aa′

∪ xx′
∪ yy′

∪ zz ′, then the result is obtained.
n n
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Fig. 2. The illustration of z ′
∈ V (C2).

Fig. 3. The illustration of z ′
∈ V (C3).

Fig. 4. The illustration of z ′
∈ V (Cn+1).

Case 2. None of the vertices in X ′ have their outside neighbors belonging to C2.
Without loss of generality, let x′

i ∈ V (Ci+2) for 1 ≤ i ≤ n − 1, x′
∈ V (Cn+2) and y′

∈ V (Cn+3). To prove the result, the
following subcases are considered.

Subcase 2.1. z ′
∈ V (C ).
2

198
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Fig. 5. The illustration of Subcase 2.1.1.

By (2) of Lemma 1, there is an edge wiw
′

i ∈ Ecr (Ci+2, C2) such that wi ∈ V (Ci+2) and w′

i ∈ V (C2) for 1 ≤ i ≤ n − 1. Let
= {w′

1, w
′

2, . . . , w
′

n−1, z
′
}. By Lemma 7, κ(C2) = n. By Lemma 4, there are n internally disjoint paths W1,W2, . . . ,Wn

rom w to W such that w′

i ∈ Wi for 1 ≤ i ≤ n − 1 and z ′
∈ Wn. As Ci+2 is connected, there is a path P̂i between x′

i and wi
n Ci+2 for 1 ≤ i ≤ n − 1. Consequently, we just consider z ′

̸= w and w′

i ̸= w for each i ∈ [n − 1] by the location of w′ as
he discussions for z ′

= w or w′

i = w for some i ∈ [n − 1] are similar.
Subcase 2.1.1. w′

∈ V (C1)
In this case, ww′, zz ′

∈ Ecr (C1, C2) and z ′, w ∈ V (C2). By (1) of Lemma 1, p(z ′) = p(w). Thus, dH (z ′, w) = n ≥ 3. Recall
that Wn is the path from z ′ to w in C2, so there is a vertex v ∈ V (Wn) \ {z ′, w}. See Fig. 5. As ww′, zz ′

∈ Ecr (C1, C2), by (2)
f Lemma 1, v′ /∈ ∪

n+1
i=1 V (Ci). That is, v′

∈ ∪
2n
i=n+2V (Ci). As HCNn[∪

2n
i=n+2V (Ci)] is connected, it contains a tree T connecting

x′, y′ and v′. Let Ti = T̂i ∪ P̂i ∪ Wi ∪ xix′

i ∪ wiw
′

i for 1 ≤ i ≤ n − 1 and Tn = T ∪ Wn ∪ xx′
∪ yy′

∪ zz ′
∪ vv′, then n internally

disjoint S-trees Tis for 1 ≤ i ≤ n are obtained in HCNn.
Subcase 2.1.2. w′

∈ V (Ci+2) for some i ∈ [n − 1]
Without loss of generality, let w′

∈ V (C3). See Fig. 6. By (2) of Lemma 1, there is an edge aa′
∈ Ecr (Cn+2, C3) such that

a ∈ V (Cn+2) and a′
∈ V (C3). Let S = {x′

1, w
′
} and T = {w1, a′

}. By Lemma 5, there are two internally disjoint (S, T )-paths,
say P̂ and P , such that P̂ is the path from x′

1 to w1 and P is the path from w′ to a′. Let H = HCNn[V (Cn+2 ∪ Cn+3)]. By
Lemma 3, H is connected. Thus, there is a tree T connecting x′, a and y′ in H . Let T1 = T̂1 ∪ P̂ ∪ W1 ∪ x1x′

1 ∪ w1w
′

1, Ti =

Ti ∪ P̂i ∪ Wi ∪ xix′

i ∪ wiw
′

i for 2 ≤ i ≤ n − 1, and Tn = Wn ∪ P ∪ T ∪ ∪xx′
∪ yy′

∪ zz ′
∪ ww′

∪ aa′, then n internally disjoint
S-trees Tis for 1 ≤ i ≤ n are obtained in HCNn.

Subcase 2.1.3. w′
∈ ∪

2n
i=n+2V (Ci)

By Lemma 3, HCNn[∪
2n
i=n+2V (Ci)] is connected and it has a tree T connecting x′, y′ and w′. Let Ti = T̂i∪P̂i∪Wi∪xix′

i∪wiw
′

i
for 1 ≤ i ≤ n − 1 and Tn = Wn ∪ T ∪ xx′

∪ yy′
∪ zz ′

∪ ww′, then n internally disjoint S-trees are obtained in HCNn.
Subcase 2.2. z ′

∈ V (Ci+2) for some i ∈ [n − 1].
Without loss of generality, let z ′

∈ V (C3), then x1x′

1, zz
′
∈ Ecr (C1, C3). See Fig. 7. By (2) of Lemma 1, y′

1 /∈ ∪
n+3
i=1 V (Ci).

Without loss of generality, let y′

1 ∈ V (Cn+4). By (2) of Lemma 1, there are edges aa′
∈ Ecr (Cn+3, C2) and bb′

∈ Ecr (Cn+4, C2)
such that a ∈ V (Cn+3), b ∈ V (Cn+4) and a′, b′

∈ V (C2). Recall that there is an edge wiw
′

i ∈ Ecr (Ci+2, C2) such that
wi ∈ V (Ci+2) and w′

i ∈ C2 for 2 ≤ i ≤ n − 1. Let W = {b′, w′

2, w
′

3, . . . , w
′

n−1, a
′
}. By Lemma 7, κ(C2) = n. By Lemma 4,

there are n internally disjoint paths W1,W2, . . . ,Wn from w to W such that b′
∈ W1, w′

i ∈ Wi for 2 ≤ i ≤ n − 1 and
a′

∈ Wn. As Ci is connected for each i ∈ [2n
], there is a path P between y′

1 and b in Cn+4 and there is a path P̂i between x′

i
and wi in Ci+2 for 2 ≤ i ≤ n − 1. Let H = HCNn[V (C3 ∪ Cn+2 ∪ Cn+3)]. By Lemma 3, H is connected. Thus, there is a tree
T connecting x′, y′, z ′ and a in H . Let T1 = T̂1 ∪ P ∪ W1 ∪ y1y′

1 ∪ bb′, Ti = T̂i ∪ P̂i ∪ Wi ∪ xix′

i ∪ wiw
′

i for 2 ≤ i ≤ n − 1 and
n = Wn ∪ T ∪ aa′

∪ xx′
∪ yy′

∪ zz ′, then n internally disjoint S-trees are obtained in HCNn.
Subcase 2.3. z ′

∈ ∪
2n
i=n+2V (Ci).

Let H = HCNn[∪
2n
i=n+2V (Ci)]. By Lemma 3, H is connected. By (2) of Lemma 1, there are edges wiw

′

i ∈ Ecr (Ci+2, C2) such
hat wi ∈ V (Ci+2) and w′

i ∈ V (C2) for 1 ≤ i ≤ n − 1 and aa′
∈ Ecr (Cn+3, C2) such that a ∈ V (Cn+3) and a′

∈ V (C2). Let
= {w′

1, w
′

2, w
′

3, . . . , w
′

n−1, a
′
}. By Lemma 7, κ(C2) = n. By Lemma 4, there are n internally disjoint pathsW1,W2, . . . ,Wn

rom w to W such that w′

i ∈ Wi for 1 ≤ i ≤ n−1 and a′
∈ Wn. As Ci+2 is connected, it contains a path P̂i between x′

i and wi
n Ci+2 for 1 ≤ i ≤ n−1. As H is connected, it contains a tree T connecting x′, y′, z ′ and a. Let Ti = T̂i ∪ P̂i ∪Wi ∪xix′

i ∪wiw
′

i
or 1 ≤ i ≤ n − 1 and Tn = Wn ∪ T ∪ aa′

∪ xx′
∪ yy′

∪ zz ′, thus n internally disjoint S-trees are obtained in HCNn. □

emma 11. Let C1, C2, . . . , C2n be the 2n clusters of HCNn for n ≥ 3. Let S = {x, y, z, w} ⊆ V (HCNn) such that |S
⋂

V (Ci)| = 2
nd |S

⋂
V (C )| = 2 for distinct i, j ∈ [2n

], then there are n internally disjoint trees connecting S in HCN .
j n
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F
n
X̂

Fig. 6. The illustration of Subcase 2.1.2.

Fig. 7. The illustration of Subcase 2.2.

Proof. Without loss of generality, let |S
⋂

V (C1)| = 2 and |S
⋂

V (C2)| = 2. Let {x, y} ⊆ V (C1) and {z, w} ⊆ V (C2). See
ig. 8. By Lemma 7, κ(C1) = κ(C2) = n, then there are n internally disjoint paths P1, P2, . . . , Pn between x and y in C1 and
internally disjoint paths P ′

1, P
′

2, . . . , P
′
n between z and w in C2. Let xi ∈ V (Pi)∩N(x) and zi ∈ V (P ′

i )∩N(z) for 1 ≤ i ≤ n. Let
= {x, x1, x2, . . . , xn} and Ẑ = {z, z1, z2, . . . , zn}. Choose n vertices from X̂ , denoted by X , such that the outside neighbor

of any vertex in X does not belong to C2. Similarly, choose n vertices from Ẑ , denoted by Z , such that the outside neighbor
of any vertex in Z does not belong to C1. By Lemma 2, this can be done. Without loss of generality, let X = {x1, x2, . . . , xn}
and Z = {z1, z2, . . . , zn}. Let X ′

= {x′

1, x
′

2, . . . , x
′
n} and Z ′

= {z ′

1, z
′

2, . . . , z
′
n}, where x′

i and z ′

i are the outside neighbors of xi
and zi, respectively. By Lemma 2, the vertices in X ′(resp.Z ′) belong to different clusters of HCNn. Without loss of generality,
let x′

i ∈ V (Ci+2) for 1 ≤ i ≤ n. By the location of the vertices in Z ′, the following two cases need to be considered.
Case 1. The vertices in X ′

∪ Z ′ belong to different clusters of HCNn.
Without loss of generality, let z ′

i ∈ V (Cn+2+i) for i ∈ [n]. As 2n
≥ 2n + 2 for n ≥ 3, this can be done. By Lemma 3,

HCNn[V (Ci
⋃

Cn+2+i)] is connected for each i ∈ [n]. Then there is a path P̂i between x′

i and z ′

i in HCNn[V (Ci
⋃

Cn+2+i)] for
each i ∈ [n]. Let Ti = Pi

⋃
P ′

i ∪ P̂i ∪ xix′

i
⋃

ziz ′

i for each i ∈ [n], thus n internally disjoint S-trees Tis for 1 ≤ i ≤ n are
obtained in HCNn.

Case 2. There exists an element of X ′ which belongs to the same cluster with some element of Z ′.
Without loss of generality, let x′

i and z ′

i belong to the same cluster for 1 ≤ i ≤ m, where 1 ≤ m ≤ n. In addition,
let z ′

i ∈ V (Cn+2−m+i) for m + 1 ≤ i ≤ n. As Ci is connected, there is a path P̂i between x′

i and z ′

i in Ci for 1 ≤ i ≤ m.
In addition, there is a path P̂i between x′

i and z ′

i in HCNn[V (Ci
⋃

Cn+2−m+i)], as it is connected for m + 1 ≤ i ≤ n. Let
Ti = Pi

⋃
P ′

i ∪ P̂i ∪ xix′

i
⋃

ziz ′

i for each i ∈ [n], then n internally disjoint S-trees Tis for 1 ≤ i ≤ n are obtained in HCNn. □

Recall that the n-dimensional hierarchical cubic network HCNn can be decomposed into 2n clusters, say C1, C2, . . . , C2n .
As C is isomorphic to an n-dimensional hypercube Q for each i ∈ [2n

], by Lemma 7, κ(C ) = n. Let x, y ∈ V (C ), then
i n i 1
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Fig. 8. The illustration of Case 1.

Fig. 9. The illustration of y′
∈ V (C2).

there are n internally disjoint paths P1, P2, . . . , Pn between x and y in C1. By the known result, we have the following
emma.

emma 12. Let C1, C2, . . . , C2n be the 2n clusters of HCNn for n ≥ 3. Let S = {x, y, z, w} ⊆ V (HCNn) such that
, y ∈ V (C1), z ∈ V (C2) and w ∈ V (C3). Let P1, P2, . . . , Pn be the n internally disjoint paths between x and y in C1. Let
i ∈ N(x) ∩ V (Pi) for i ∈ [n] and N[x] = {x, x1, x2, . . . , xn}. If there are two cross edges between N[x] and V (C2 ∪ C3), then
here are n internally disjoint trees connecting S in HCNn.

roof. Let x′, y′ and x′

i be the outside neighbors of x, y and xi for 1 ≤ i ≤ n, respectively. By Lemma 2, the outside
neighbors of vertices in N[x] belong to different clusters of HCNn. Consequently, we just consider the case for y /∈ N[x] as
he discussion for y ∈ N[x] is similar.

Case 1. x′

i ∈ V (C2) and x′

j ∈ V (C3) for some two distinct i, j ∈ [n].
Without loss of generality, let x′

1 ∈ V (C2), x′

2 ∈ V (C3), x′

i ∈ V (Ci+1) for 3 ≤ i ≤ n and x′
∈ V (Cn+2).

If y′
∈ V (C2), by (2) of Lemma 1, there is an edge ziz ′

i ∈ Ecr (Ci+1, C2) such that zi ∈ V (Ci+1) and z ′

i ∈ V (C2) for 3 ≤ i ≤ n.
ee Fig. 9. In addition, there is an edge wiw

′

i ∈ Ecr (Ci+1, C3) such that wi ∈ V (Ci+1) and w′

i ∈ V (C3) for 3 ≤ i ≤ n + 1.
et Z = {x′

1, y
′, z ′

3, . . . , z
′
n} and W = {x′

2, w
′

3, w
′

4, . . . , w
′

n+1}. By Lemma 7, κ(C2) = κ(C3) = n. By Lemma 4, there are
internally disjoint paths Z1, Z2, . . . , Zn from z to Z and n internally disjoint paths W1,W2, . . . ,Wn from w to W such

hat x′

1 ∈ Z1, y′
∈ Z2, z ′

i ∈ Zi for 3 ≤ i ≤ n, x′

2 ∈ W1 and w′

i ∈ Wi−1 for 3 ≤ i ≤ n + 1. As Cn+2 is connected, there is
path P between x′ and wn+1 in Cn+2. In addition, there is a tree T̂i connecting x′

i, zi and wi in Ci+1 for 3 ≤ i ≤ n. Let
1 = P1 ∪ Z1 ∪ P ∪Wn ∪ x1x′

1 ∪ xx′
∪wn+1w

′

n+1, T2 = P2 ∪ Z2 ∪W1 ∪ yy′
∪ x2x′

2 and Ti = Pi ∪ T̂i ∪ Zi ∪Wi−1 ∪ xix′

i ∪ ziz ′

i ∪wiw
′

i
or 3 ≤ i ≤ n, then n internally disjoint trees connecting S are obtained in HCNn.

If y′
∈ V (C3), similar as y′

∈ V (C2), n internally disjoint trees connecting S can be obtained in HCNn.
If y′

∈ V (Ci+1) for some 3 ≤ i ≤ n, without loss of generality, let y′
∈ V (C4). See Fig. 10. As 2n > n + 3 for

≥ 3, there is a cluster, say Cn+3. By (2) of Lemma 1, there is an edge aa′
∈ Ecr (Cn+2, C2) such that a ∈ V (Cn+2) and

′
∈ V (C ). In addition, there are edges vv′

∈ E (C , C ), bb′
∈ E (C , C ), cc ′

∈ E (C , C ) and uu′
∈ E (C , C )
2 cr 4 3 cr n+3 2 cr n+3 3 cr 4 n+3
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Fig. 10. The illustration of y′
∈ V (C4).

Fig. 11. The illustration of y′
∈ V (Cn+2).

such that v ∈ V (C4), v′
∈ V (C3), b, c, u′

∈ V (Cn+3), b′
∈ V (C2), c ′

∈ V (C3) and u ∈ V (C4). In addition, there are edges
iz ′

i ∈ Ecr (Ci+1, C2) and wiw
′

i ∈ Ecr (Ci+1, C3) such that zi, wi ∈ V (Ci+1), z ′

i ∈ V (C2) and w′

i ∈ V (C3) for 4 ≤ i ≤ n. As Ci is
onnected for each i ∈ [2n

], there is a path P between x′ and a in Cn+2, there is a tree T connecting u′, b and c in Cn+3
nd there is a tree T ′

i connecting x′

i, zi and wi in Ci for 4 ≤ i ≤ n. As κ(C4) = n ≥ 3, let S = {x′

3, y
′
} and T = {u, v}.

y Lemma 5, there are two disjoint paths from S to T , say R1 and R2, such that R1 is a path from x′

3 to u and R2 is a
ath from y′ to v. Let Z = {x′

1, a
′, b′, z ′

4, . . . , z
′
n} and W = {v′, x′

2, c
′, w′

4, . . . , w
′
n}. By Lemma 7, κ(C2) = κ(C3) = n. By

emma 4, there are n internally disjoint paths Z1, Z2, . . . , Zn from z to Z and n internally disjoint paths W1,W2, . . . ,Wn
rom w to W such that x′

1 ∈ Z1, a′
∈ Z2, b′

∈ Z3, z ′

i ∈ Zi, v′
∈ W1, x′

2 ∈ W2, c ′
∈ W3 and w′

i ∈ Wi for 4 ≤ i ≤ n. Let
T1 = P1∪x1x′

1∪Z1∪yy′
∪R2∪vv′

∪W1, T2 = P2∪x2x′

2∪W2∪xx′
∪P∪aa′

∪Z2, T3 = P3∪x3x′

3∪R1∪uu′
∪T ∪bb′

∪cc ′
∪Z3∪W3

nd let Ti = Pi ∪ T̂i ∪ xix′

i ∪ ziz ′

i ∪ wiw
′

i ∪ Zi ∪ Wi for 4 ≤ i ≤ n, then n internally disjoint trees connecting S are obtained
n HCNn.

If y′
∈ V (Cn+2). See Fig. 11. By (2) of Lemma 1, there are edges ziz ′

i ∈ Ecr (Ci+1, C2) and wiw
′

i ∈ Ecr (Ci+1, C3) such that
i, wi ∈ V (Ci+1), z ′

i ∈ V (C2) and w′

i ∈ V (C3) for 3 ≤ i ≤ n+1. Let Z = {x′

1, z
′

3, z
′

4, . . . , z
′

n+1} and W = {x′

2, w
′

3, w
′

4, . . . , w
′

n+1}.
y Lemma 7, κ(C2) = κ(C3) = n. By Lemma 4, there are n internally disjoint paths Z1, Z2, . . . , Zn from z to Z and
internally disjoint paths W1,W2, . . . ,Wn from w to W such that x′

1 ∈ Z1, z ′

i ∈ Zi−1, x′

2 ∈ W1 and w′

i ∈ Wi−1 for
≤ i ≤ n + 1. As Ci is connected for each i ∈ [2n

], there is a tree T connecting x′, y′, zn+1 and wn+1 in Cn+2. In addition,
here is a tree T̂i−1 connecting x′

i, zi and wi in Ci+1 for 3 ≤ i ≤ n. Let T1 = P1 ∪ (P2 \ {x}) ∪ Z1 ∪ W1 ∪ x1x′

1 ∪ x2x′

2, Ti−1 =

i ∪ T̂i−1 ∪ Zi−1 ∪ Wi−1 ∪ xix′

i ∪ ziz ′

i ∪ wiw
′

i for 3 ≤ i ≤ n and Tn = T ∪ Zn ∪ Wn ∪ xx′
∪ yy′

∪ zn+1z ′

n+1 ∪ wn+1w
′

n+1, then n
nternally disjoint trees connecting S are obtained in HCNn.

If y′
∈ V (HCNn)\∪

n+2
i=1 V (Ci). Without loss of generality, let y′

∈ V (Cn+3). See Fig. 12. By (2) of Lemma 1, there are edges
iz ′

i ∈ Ecr (Ci+1, C2) and wiw
′

i ∈ Ecr (Ci+1, C3) such that zi, wi ∈ V (Ci+1), z ′

i ∈ V (C2) and w′

i ∈ V (C3) for 3 ≤ i ≤ n + 1. Let
= {x′

1, z
′

3, z
′

4, . . . , z
′

n+1} and W = {x′

2, w
′

3, w
′

4, . . . , w
′

n+1}. By Lemma 7, κ(C2) = κ(C3) = n. By Lemma 4, there are n
nternally disjoint paths Z1, Z2, . . . , Zn from z to Z and n internally disjoint paths W1,W2, . . . ,Wn from w to W such that
′
∈ Z , z ′

∈ Z , x′
∈ W and w′

∈ W for 3 ≤ i ≤ n + 1. By Lemma 3, HCN [V (C ∪ C )] is connected. Thus, it
1 i i−1 2 1 i i−1 n n+2 n+3
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Fig. 12. The illustration of y′
∈ V (Cn+3).

Fig. 13. The illustration of Case 2 of Lemma 12.

contains a tree T that connects x′, zn+1, wn+1 and y′. As Ci+1 is connected for 3 ≤ i ≤ n+1, there is a tree T̂i−1 connecting
x′

i, zi and wi in Ci+1 for 3 ≤ i ≤ n+1. Let T1 = P1∪Z1∪W1∪(P2\{x})∪x1x′

1∪x2x′

2, Ti−1 = Pi∪T̂i−1∪Zi−1∪Wi−1∪xix′

i∪ziz ′

i∪wiw
′

i
for 3 ≤ i ≤ n and Tn = T ∪ Zn ∪ Wn ∪ xx′

∪ zn+1z ′

n+1 ∪ yy′
∪ wn+1w

′

n+1, then n internally disjoint trees connecting S are
obtained in HCNn.

Case 2. x′
∈ V (C2) and x′

i ∈ V (C3) for some i ∈ [n].
Without loss of generality, let x′

∈ V (C2), x′

1 ∈ V (C3) and x′

i ∈ V (Ci+2) for 2 ≤ i ≤ n. See Fig. 13. By (2) of Lemma 1,
there are edges ziz ′

i ∈ Ecr (Ci+2, C2) and wiw
′

i ∈ Ecr (Ci+2, C3) such that z ′

i ∈ V (C2), w′

i ∈ V (C3) and zi, wi ∈ V (Ci+2) for
2 ≤ i ≤ n. Let Z = {x′, z ′

2, z
′

3, . . . , z
′
n} and W = {x′

1, w
′

2, w
′

3, . . . , w
′
n}. By Lemma 7, κ(C2) = κ(C3) = n. By Lemma 4, there

are n internally disjoint paths Z1, Z2, . . . , Zn from z to Z and n internally disjoint paths W1,W2, . . . ,Wn from w to W such
that x′

∈ Z1, z ′

i ∈ Zi, x′

1 ∈ W1 and w′

i ∈ Wi for 2 ≤ i ≤ n. As Ci+2 is connected for each i ∈ [2n
], there is a tree T ′

i connecting
x′

i, zi and wi in Ci+2 for 2 ≤ i ≤ n. Let T1 = P1 ∪ Z1 ∪ W1 ∪ xx′
∪ x1x′

1 and Ti = Pi ∪ T ′

i ∪ Zi ∪ Wi ∪ xix′

i ∪ ziz ′

i ∪ wiw
′

i for
2 ≤ i ≤ n, then n internally disjoint trees connecting S are obtained in HCNn. □

Lemma 13. Let C1, C2, . . . , C2n be the 2n clusters of HCNn for n ≥ 3. Let S = {x, y, z, w} ⊆ V (HCNn) such that
x, y ∈ V (C1), z ∈ V (C2) and w ∈ V (C3). Let P1, P2, . . . , Pn be the n internally disjoint paths between x and y in C1. Let
xi ∈ N(x) ∩ V (Pi) for i ∈ [n] and N[x] = {x, x1, x2, . . . , xn}. If there is at most one cross edge between N[x] and V (C2 ∪ C3),
then there are n internally disjoint trees connecting S in HCNn.

Proof. Let x′, y′ and x′

i be the outside neighbors of x, y and xi for 1 ≤ i ≤ n, respectively. By Lemma 2, the outside
neighbors of vertices in N[x] belong to different clusters of HCNn. To prove the result, the following cases are considered.

Case 1. There is exactly one cross edge between N[x] and V (C2 ∪ C3).
Without loss of generality, let x′

1 ∈ V (C2), x′

i ∈ V (Ci+2), and x′
∈ V (Cn+3) for 2 ≤ i ≤ n. See Fig. 14. By (2) of Lemma 1,

there are edges z z ′
∈ E (C , C ) for 2 ≤ i ≤ n and w w′

∈ E (C , C ) for 2 ≤ i ≤ n + 1 such that z , w ∈ V (C ), z ′
∈
i i cr i+2 2 i i cr i+2 3 i i i+2 i
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Fig. 14. The illustration of Case 1 of Lemma 13.

Fig. 15. The illustration of Case 2 of Lemma 13.

V (C2) and w′

i ∈ V (C3). As Ci is connected for each i ∈ [2n
], there is a path P between x′ and wn+1 in Cn+3 and a tree

Ti connecting x′

i, zi and wi in Ci+2 for 2 ≤ i ≤ n. Let Z = {x′

1, z
′

2, z
′

3, . . . , z
′
n} and W = {w′

2, w
′

3, w
′

4, . . . , w
′

n+1}. By
Lemma 7, κ(C2) = κ(C3) = n. By Lemma 4, there are n internally disjoint paths Z1, Z2, . . . , Zn from z to Z and n internally
disjoint paths W1,W2, . . . ,Wn from w to W such that x′

1 ∈ Z1, z ′

i ∈ Zi, w′

n+1 ∈ W1, and w′

i ∈ Wi for 2 ≤ i ≤ n. Let
T1 = P1 ∪ Z1 ∪ P ∪W1 ∪ x1x′

1 ∪ xx′
∪ wn+1w

′

n+1 and Ti = Pi ∪ T̂i ∪ Zi ∪Wi ∪ xix′

i ∪ ziz ′

i ∪ wiw
′

i for 2 ≤ i ≤ n. Then n internally
disjoint trees connecting S are obtained in HCNn.

Case 2. There is no cross edge between N[x] and V (C2 ∪ C3).
Without loss of generality, let x′

i ∈ V (Ci+3) for 1 ≤ i ≤ n. See Fig. 15. By (2) of Lemma 1, there are edges
ziz ′

i ∈ Ecr (Ci+3, C2) and wiw
′

i ∈ Ecr (Ci+3, C3) such that zi, wi ∈ V (Ci+3), z ′

i ∈ V (C2) and w′

i ∈ V (C3) for 1 ≤ i ≤ n. Let
Z = {z ′

1, z
′

2, . . . , z
′
n} and W = {w′

1, w
′

2, . . . , w
′
n}. By Lemma 7, κ(C2) = κ(C3) = n. By Lemma 4, there are n internally

disjoint paths Z1, Z2, . . . , Zn from z to Z and n internally disjoint paths W1,W2, . . . ,Wn from w to W such that z ′

i ∈ Zi
and w′

i ∈ Wi for 1 ≤ i ≤ n. As Ci+3 is connected, there is a tree T̂i connecting x′

i, zi and wi in Ci+3 for 1 ≤ i ≤ n. Let
Ti = Pi ∪ T̂i ∪ Zi ∪ Wi ∪ xix′

i ∪ ziz ′

i ∪ wiw
′

i for 1 ≤ i ≤ n, then the result is obtained. □

Lemma 14. Let C1, C2, . . . , C2n be the 2n clusters of HCNn for n ≥ 3. Let S = {x, y, z, w} ⊆ V (HCNn) such that |S ∩ V (Ci)| = 1,
|S ∩ V (Cj)| = 1, |S ∩ V (Ck)| = 1 and |S ∩ V (Cℓ)| = 1, i, j, k, ℓ are mutually distinct and i, j, k, ℓ ∈ [2n

], then there are n
internally disjoint trees connecting S in HCNn.

Proof. Without loss of generality, let |S
⋂

V (C1)| = 1, |S
⋂

V (C2)| = 1, |S
⋂

V (C3)| = 1, and |S
⋂

V (C4)| = 1. Let
x ∈ V (C1), y ∈ V (C2), z ∈ V (C3), and w ∈ V (C4), see Fig. 16. By (2) of Lemma 1 and 2n

≥ n + 4 for n ≥ 3, one can
hoose n vertices from C1, say x1, x2, . . . , xn, such that x′

i ∈ V (Ci+4), where x′

i is the outside neighbor of xi in HCNn and
1 ≤ i ≤ n. Then choose n vertices y1, y2, . . . , yn from C2, n vertices z1, z2, . . . , zn from C3 and n vertices w1, w2, . . . , wn
rom C such that y′, z ′, w′

∈ V (C ), where y′, z ′ and w′ are the outside neighbors of y , z and w , respectively. Let
4 i i i i+4 i i i i i i
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Fig. 16. The illustration of the proof of Lemma 14.

X = {x1, x2, . . . , xn}, Y = {y1, y2, . . . , yn}, Z = {z1, z2, . . . , zn} and W = {w1, w2, . . . , wn}. By Lemma 4, there are n
internally disjoint paths X1, X2, . . . , Xn from x to X such that xi ∈ Xi, n internally disjoint paths Y1, Y2, . . . , Yn from y to
Y such that yi ∈ Yi, n internally disjoint paths Z1, Z2, . . . , Zn from z to Z such that zi ∈ Zi and n internally disjoint paths
W1,W2, . . . ,Wn from w to W such that wi ∈ Wi, respectively. It is possible that one of the paths Xis(resp.Yis, Zis,Wis)
is a single vertex. As Ci+4 is connected, there is a tree T̂i connecting x′

i, y
′

i , z
′

i and w′

i in Ci+4 for each i ∈ [n]. Let
Ti = Xi ∪ Yi ∪ Zi ∪ Wi ∪ T̂i ∪ xix′

i ∪ yiy′

i ∪ ziz ′

i ∪ wiw
′

i for each i ∈ [n]. Then n internally disjoint S-trees Tis for 1 ≤ i ≤ n are
obtained in HCNn. □

Theorem 2. Let HCNn be an n-dimensional hierarchical cubic network, then κ4(HCNn) = n.

Proof. As HCNn is (n + 1)-regular, by Lemma 8, κ4(HCNn) ≤ δ − 1 = n. To prove the result, we just need to show that
κ4(HCNn) ≥ n. Let S = {x, y, z, w}, where x, y, z and w are any four distinct vertices of HCNn. By the symmetry of HCNn,
we prove the result by considering the following cases.

Case 1. x, y, z and w belong the same cluster of HCNn.
Without loss of generality, let S ⊆ V (C1). Recall that C1 is a copy of Qn. By Theorem 1, κ4(Qn) = n − 1. Then there

are n − 1 internally disjoint S-trees T1, T2, . . . , Tn−1 in C1. Let x′, y′, z ′ and w′ be the outside neighbors of x, y, z and w

in HCNn, respectively. Then {x′, y′, z ′, w′
} ⊆ V (HCNn \ C1). By Lemma 3, HCNn \ C1 is connected. Thus, there is a tree T̂n

connecting x′, y′, z ′ and w′ in HCNn \ C1. Let Tn = T̂n
⋃

xx′
⋃

yy′
⋃

zz ′
⋃

ww′, then T1, T2, . . . , Tn are n-internally disjoint
S-trees in HCNn and the result is as desired.

Case 2. x, y, z and w belong to two distinct clusters of HCNn.
By Lemmas 10 and 11, n-internally disjoint S-trees T1, T2, . . . , Tn can be obtained in HCNn.
Case 3. x, y, z and w belong to three distinct clusters of HCNn.
Without loss of generality, let x, y ∈ V (C1), z ∈ V (C2) and w ∈ V (C3). By Lemma 7, κ(C1) = n, thus there are n

internally disjoint paths P1, P2, . . . , Pn between x and y in C1. Let xi ∈ N(x)∩V (Pi) for i ∈ [n] and N[x] = {x, x1, x2, . . . , xn}.
By Lemma 2, the outside neighbors of vertices in N[x] belong to different clusters of HCNn. Thus, there are at most two
cross edges between N[x] and V (C2∪C3). By Lemmas 12 and 13, n-internally disjoint S-trees T1, T2, . . . , Tn can be obtained
in HCNn.

Case 4. x, y, z and w belong to four distinct clusters of HCNn.
By Lemma 14, n-internally disjoint S-trees T1, T2, . . . , Tn can be obtained in HCNn.
Thus, κ4(HCNn) = n and the result is desired. □

Corollary 1. Let HCNn be an n-dimensional hierarchical cubic network for n ≥ 3, then κ3(HCNn) = n.

Proof. By Theorem 2, κ4(HCNn) = n. As HCNn is (n + 1)-regular, by Lemma 9, κ3(HCNn) = n. Thus, the result holds. □

4. Concluding remarks

The hierarchical cubic network HCNn has some attractive properties to design interconnection networks. In this paper,
we focus on κ4(HCNn) of the hierarchical cubic network HCNn and obtain that κ4(HCNn) = n for n ≥ 3. As a corollary, we
obtain that κ3(HCNn) = n for n ≥ 3. In future work, the generalized r-connectivity of the hierarchical cubic network for
r ≥ 5 would be an interesting problem.
205



S.-L. Zhao, R.-X. Hao and J. Wu Discrete Applied Mathematics 289 (2021) 194–206

A

F

R

cknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 11971054 and 11731002),
undamental Research Funds for the Central Universities (2019YJS192).

eferences

[1] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, New York, 2007.
[2] G. Chartrand, F. Okamoto, P. Zhang, Rainbow trees in graphs and generalized connectivity, Networks 55 (4) (2010) 360–367.
[3] Y.C. Chen, J.J.M. Tan, Restricted connectivity for three families of interconnection networks, Appl. Math. Comput. 188 (2) (2007) 1848–1855.
[4] W.-K. Chiang, R.-J. Chen, Topological properties of hierarchical cubic networks, J. Syst. Archit. 42 (4) (1996) 289–307.
[5] J.-S. Fu, G.-H. Chen, Hamiltonicity of the hierarchical cubic network, Theory Comput. Syst. 35 (1) (2002) 59–79.
[6] J.-S. Fu, G.-H. Chen, D.-R. Duh, Node-disjoint paths and related problems on hierarchical cubic networks, Networks 40 (2002) 142–154.
[7] K. Ghose, K.R. Desai, Hierarchical cubic network, IEEE Trans. Parallel Distrib. Syst. 6 (1995) 427–435.
[8] M. Hager, Pendent tree-connectivity, J. Combin. Theory. 38 (1985) 179–189.
[9] J.H. Lee, S.M. Park, K.Y. Chwa, Recursive circulant: a new topology for multicomputer networks, in: Proceedings of Internet Symposium Parallel

Architectures, Algorithms and Networks (ISPAN94) Japan, IEEE Press, New York, 1994, pp. 73–80.
[10] S.S. Li, X.L. Li, Note on the hardness of generalized connectivity, J. Comb. Optim. 24 (2012) 389–396.
[11] S.S. Li, W. Li, X.L. Li, The generalized connectivity of complete bipartite graphs, Ars Combin. 104 (2012) 65–79.
[12] H.Z. Li, X.L. Li, Y.P. Mao, Y.F. Sun, Note on the generalized connectivity, Ars Combin. 114 (2014) 193–202.
[13] H.Z. Li, X.L. Li, Y.F. Sun, The generalized 3-connectivity of cartesian product graphs, Discrete Math. Theor. Comput. Sci. 14 (1) (2012) 43–54.
[14] S.S. Li, X.L. Li, W.L. Zhou, Sharp bounds for the generalized connectivity κ3(G), Discrete Math. 310 (2010) 2147–2163.
[15] H.Z. Li, Y.B. Ma, W.H. Yang, Y.F. Wang, The generalized 3-connectivity of graph products, Appl. Math. Comput. 295 (2017) 77–83.
[16] S.S. Li, Y.T. Shi, J.H. Tu, The generalized 3-connectivity of cayley graphs on symmetric groups generated by trees and cycles, Graphs Combin.

33 (2017) 1195–1209.
[17] S.S. Li, J.H. Tu, C.Y. Yu, The generalized 3-connectivity of star graphs and bubble-sort graphs, Appl. Math. Comput. 274 (2016) 41–46.
[18] H.Z. Li, B.Y. Wu, J.X. Meng, Y.B. Ma, Steiner tree packing number and tree connectivity, Discrete Math. 341 (2018) 1945–1951.
[19] S.W. Lin, Q.H. Zhang, The generalized 4-connectivity of hypercubes, Discrete Appl. Math. 220 (2017) 60–67.
[20] H. Whitney, Congruent graphs and connectivity of graphs, J. Amer. Math. Soc. 54 (1932) 150–168.
[21] S.-K. Yun, K.-H. Park, The optimal routing algorithm in hierarchical cubic network and its properties, IEICE Trans. Inform. Syst. E78-D (4) (1995)

436–443.
[22] S.-K. Yun, K.-H. Park, Comments on hierarchical cubic network, IEEE Trans. Parallel Distrib. Syst. 9 (1998) 410–414.
[23] S. Zhao, R. Hao, The generalized connectivity of alternating group graphs and (n, k)-star graphs, Discrete Appl. Math. 251 (2018) 310–321.
[24] S. Zhao, R. Hao, The generalized 3-connectivity of two kinds of cayley graphs, Comput. J. 62 (2019) 144–149.
[25] S. Zhao, R. Hao, The generalized 4-connectivity of exchanged hypercubes, Appl. Math. Comput. 347 (2019) 342–353.
[26] S. Zhao, R. Hao, J. Wu, The generalized 3-connectivity of some regular networks, J. Parallel Distrib. Comput. 133 (2019) 18–29.
[27] S. Zhao, R. Hao, L. Wu, The generalized connectivity of (n, k)-bubble-sort graphs, Comput. J. 62 (2019) 1277–1283.
[28] S. Zhou, S. Song, X. Yang, L. Chen, On conditional fault tolerance and diagnosability of hierarchical cubic networks, Theoret. Comput. Sci. 609

(2016) 421–433.
206

http://refhub.elsevier.com/S0166-218X(20)30454-6/sb1
http://refhub.elsevier.com/S0166-218X(20)30454-6/sb2
http://refhub.elsevier.com/S0166-218X(20)30454-6/sb3
http://refhub.elsevier.com/S0166-218X(20)30454-6/sb4
http://refhub.elsevier.com/S0166-218X(20)30454-6/sb5
http://refhub.elsevier.com/S0166-218X(20)30454-6/sb6
http://refhub.elsevier.com/S0166-218X(20)30454-6/sb7
http://refhub.elsevier.com/S0166-218X(20)30454-6/sb8
http://refhub.elsevier.com/S0166-218X(20)30454-6/sb9
http://refhub.elsevier.com/S0166-218X(20)30454-6/sb9
http://refhub.elsevier.com/S0166-218X(20)30454-6/sb9
http://refhub.elsevier.com/S0166-218X(20)30454-6/sb10
http://refhub.elsevier.com/S0166-218X(20)30454-6/sb11
http://refhub.elsevier.com/S0166-218X(20)30454-6/sb12
http://refhub.elsevier.com/S0166-218X(20)30454-6/sb13
http://refhub.elsevier.com/S0166-218X(20)30454-6/sb14
http://refhub.elsevier.com/S0166-218X(20)30454-6/sb15
http://refhub.elsevier.com/S0166-218X(20)30454-6/sb16
http://refhub.elsevier.com/S0166-218X(20)30454-6/sb16
http://refhub.elsevier.com/S0166-218X(20)30454-6/sb16
http://refhub.elsevier.com/S0166-218X(20)30454-6/sb17
http://refhub.elsevier.com/S0166-218X(20)30454-6/sb18
http://refhub.elsevier.com/S0166-218X(20)30454-6/sb19
http://refhub.elsevier.com/S0166-218X(20)30454-6/sb20
http://refhub.elsevier.com/S0166-218X(20)30454-6/sb21
http://refhub.elsevier.com/S0166-218X(20)30454-6/sb21
http://refhub.elsevier.com/S0166-218X(20)30454-6/sb21
http://refhub.elsevier.com/S0166-218X(20)30454-6/sb22
http://refhub.elsevier.com/S0166-218X(20)30454-6/sb23
http://refhub.elsevier.com/S0166-218X(20)30454-6/sb24
http://refhub.elsevier.com/S0166-218X(20)30454-6/sb25
http://refhub.elsevier.com/S0166-218X(20)30454-6/sb26
http://refhub.elsevier.com/S0166-218X(20)30454-6/sb27
http://refhub.elsevier.com/S0166-218X(20)30454-6/sb28
http://refhub.elsevier.com/S0166-218X(20)30454-6/sb28
http://refhub.elsevier.com/S0166-218X(20)30454-6/sb28

	The generalized 4-connectivity of hierarchical cubic networks
	Introduction
	Preliminary
	Terminologies and notations
	The n-dimensional hierarchical cubic network HCNn

	The generalized 4-connectivity of the hierarchical cubic network HCNn
	Concluding remarks
	Acknowledgments
	References


